CS 1124MEDIA
 COMPUTATION

Oct 6, 2008
Steve Harrison

TODAY

- Midterm
- Introduction to working with sound
- HW 5 - Faster and Faster

TODAY

- Midterm
- Introduction to working with sound
- HW 5 - Faster and Faster

MID TERM

- Still being graded...
- One "gotcha":
- in gray-scale to posterized question - first range was <85, second range was >85 thus if $==85$, THEREFORE SHOULD BE YELLOW

TODAY

- Midterm
- Introduction to working with sound
- HW 5 - Faster and Faster

How sound works:

Acoustics, the physics of sound

- Sounds are waves of air pressure
\square Sound comes in cycles
\square The frequency of a wave is the number of cycles per second (cps), or Hertz
- (Complex sounds have more than one frequency in them.)
\square The amplitude is the maximum height of the wave

Amplitude (Difference from zero to top of cycle)

Volume and pitch: Psychoacoustics, the psychology of sound

- Our perception of volume is related (logarithmically) to changes in amplitude
\square If the amplitude doubles, it's about a $\mathbf{3}$ decibel (dB) change
- Our perception of pitch is related (logarithmically) to changes in frequency
\square Higher frequencies are perceived as higher pitches
\square We can hear between 20 Hz and $20,000 \mathrm{~Hz}(20 \mathrm{kHz})$
\square A above middle C is 440 Hz
ERROR in the book!

"Logarithmically?"

- It's strange, but our hearing works on ratios not differences, e.g., for pitch.
\square We hear the difference between 200 Hz and 400 Hz , as the same as 500 Hz and 1000 Hz
\square Similarly, 200 Hz to $\mathbf{6 0 0} \mathbf{~ H z}$, and 1000 Hz to $\mathbf{3 0 0 0} \mathbf{~ H z}$
- Intensity (volume) is measured as watts per meter squared
\square A change from $0.1 \mathrm{~W} / \mathrm{m}^{2}$ to $0.01 \mathbf{W} / \mathrm{m}^{2}$, sounds the same to us as $0.001 \mathrm{~W} / \mathrm{m}^{2}$ to $0.0001 \mathrm{~W} / \mathrm{m}^{2}$

Decibel is a logarithmic measure

■ A decibel is a ratio between two intensities: 10 * $\log _{10}\left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)$
\square As an absolute measure, it's in comparison to threshold of audibility
$\square 0$ dB can't be heard.
\square Normal speech is 60 dB.
\square A shout is about 80 dB

Demonstrating Sound MediaTools

Fourier transform (FFT)

Digitizing Sound: How do we get that into numbers?

- Remember in calculus, estimating the curve by creating rectangles?
- We can do the same to estimate the sound curve
\square Analog-to-digital conversion 1.25
1.00
0.75 (ADC) will give us the amplitude at an instant as a number: a sample
\square How many samples do we need?

Nyquist Theorem

- We need twice as many samples as the maximum frequency in order to represent (and recreate, later) the original sound.
- The number of samples recorded per second is the sampling rate
\square If we capture $\mathbf{8 0 0 0}$ samples per second, the highest frequency we can capture is $4000 \mathbf{~ H z}$
- That's how phones work
\square If we capture more than 44,000 samples per second, we capture everything that we can hear (max $22,000 \mathrm{~Hz}$)
- CD quality is 44,100 samples per second

Digitizing sound in the computer

- Each sample is stored as a number (two bytes)
\square called a "word" \longleftarrow Not in the book
- What's the range of available combinations?
$\square 16$ bits, $2^{16}=65,536$
\square But we want both positive and negative values
- To indicate compressions and rarefactions.
\square What if we use one bit to indicate positive (0) or negative (1)?
\square That leaves us with 15 bits
$\square 15$ bits, $2^{15}=32,768$
\square One of those combinations will stand for zero
- We'll use a "positive" one, so that's one less pattern for positives

+/- 32K $(32,767)$

- Each sample can be between -32,768 and 32,767

Why such a bizarre number?

i.e. 16 bits, or 2 bytes

Compare this to $\mathbf{0}$... $\mathbf{2 5 5}$ for light intensity
(i.e. 8 bits or 1 byte)

bytes, words and binary numbers

- Each sample is stored as a number (two bytes)
\square called a "word"
Not in the book
- What's the range of available combinations?
-

16 bits, $2^{16}=65,536$ combinations
\square or $\mathbf{- 3 2 , 7 6 8}$ to $\mathbf{3 2 , 7 6 7}$
\square or (two's complement arithmetic)

$+/-$	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\mathbf{3 2 , 7 6 7}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	$\mathbf{2}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	$\mathbf{1}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{0}$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\mathbf{- 1}$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	$\mathbf{- 2}$
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{- 3 2 , 7 6 8}$

Sounds as arrays

- Samples are just stored one right after the other in the computer's memory
- That's called an array

(Like pixels in a picture)

\square It's an especially efficient (quickly accessed) memory structure
\square each sample is two bytes (or ONE WORD)

2
3
4
5

Working with sounds

- We'll use pickAFile and makeSound.
\square We want .wav files
- We'll use getSamples to get all the sample objects out of a sound
- We can also get the value at any index with getSampleValueAt
- Sounds also know their length (getLength) and their sampling rate (getSamplingRate)
- Can save sounds with writeSoundTo(sound,"file.wav")

Demonstrating Working with Sound in JES

>>> filename = pickAFile()
>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> sound = makeSound(filename)
>>> print sound
Sound of length 421109
>>> samples $=$ getSamples(sound)
>>> print samples
Samples, length 421109
>>> print getSampleValueAt(sound, 1)
36
>>> print getSampleValueAt(sound, 2)
29

Demonstrating working with

samples

>>> print getLength(sound)
220568
>>> print getSamplingRate(sound)
22050.0
>>> print getSampleValueAt(sound, 220568)
68
>>> print getSampleValueAt(sound, 220570)
I wasn't able to do what you wanted.
The error java.lang.ArrayIndexOutOfBoundsException has occured Please check line 0 of
>>> print getSampleValueAt(sound, 1)
36
>>> setSampleValueAt(sound,1, 12)
\ggg print getSampleValueAt(sound, 1)
12

Working with Samples

- We can get sample objects out of a sound with getSamples(sound) or getSampleObjectAt(sound, index)
- A sample object remembers its sound, so if you change the sample object, the sound gets changed.
- Sample objects understand getSample(sample) and setSample(sample, value)

Example: Manipulating Samples

>>> soundfile=pickAFile()
>>> sound=makeSound(soundfile)
>>> sample=getSampleObjectAt(sound, 1)
>>> print sample
Sample at 1 value at 59
>>> print sound
Sound of length 387573
>>> print getSound(sample)
Sound of length 387573
>>> print getSample(sample)
59
>>> setSample(sample, 29)
>>> print getSample(sample)
29

"But there are thousands of

 these samples!"- How do we do something to these samples to manipulate them, when there are thousands of them per second?
- We use a loop and get the computer to iterate in order to do something to each sample.
- An example loop:
for sample in getSamples(sound):
value $=$ getSample(sample)
setSample(sample, value)

Let's try a few things ...

- normalize(sound)
\square from the book
\square and revised with abs(), testing for largest @ limit of 32,767 or -32,768 and return sound
- double(sound)
\square what happens if $\mathbf{>} \mathbf{3 2 , 7 6 7}$?
\square what does it sound like? what does it look like?

Normalizing

- A few ways to think about "normalizing":
\square use the whole enchilada (don't waste any bits...)
\square make everything use the same scale (0 to 100\%)
\square need 2 loops -- one to find largest and one to reset def normalize(sound) :
largest = 0
for sample in getSamples(sound): largest $=\max ($ largest, getSample(sample))
multiplier $=32767.0 /$ largest
print '"Largest", largest, "multiplier is", multiplier
for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier)

Normalizing (modified)

def normalize(sound) :
largest = 0
for sample in getSamples(sound):
largest $=$ max (largest, abs(getSample(sample))) if largest > 32766 :
return sound
multiplier = 32768.0 $/$ largest
print '"Largest", largest, "multiplier is", multiplier for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier)
return sound

Normalizing (modified)

def normalize(sound) :
largest = 0
for sample in getSamples(sound):
largest $=$ max (largest, abs(getSample(sample))) if largest > 32766 :
return sound
multiplier $=32768.0 /$ largest
print '"Largest", largest, "multiplier is", multiplier for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier)
return sound

Normalizing (modified)

def normalize(sound) :
largest $=0$
for sample in getSamples(sound):
largest $=\max ($ largest, abs(getSample(sample))) if largest > 32766 :
return sound
multiplier $=32768.0 /$ largest
print "Largest", largest, "multiplier is", multiplier for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier)
return sound

Normalizing (modified)

def normalize(sound) :
largest = 0
for sample in getSamples(sound):
largest $=\max ($ largest, abs(getSample(sample)))
if largest > 32766 :
return sound
multiplier $=32768.0 /$ largest print "Largest", largest, "multiplier is", multiplier for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier) return sound

Normalizing (modified)

def normalize(sound) :
largest $=0$
for sample in getSamples(sound):
largest $=\max ($ largest, abs(getSample(sample)))
if largest > 32766 :
return sound
multiplier $=32768.0$ / largest print "Largest", largest, "multiplier is", multiplier for sample in getSamples(sound):
setSample(sample, getSample(sample) * multiplier) return sound

Doubling the amplitude

def double(sound) :
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample, value * 2)

TODAY

- Midterm
- Introduction to working with sound
- HW 5 - Faster and Faster

Assignment 5 - Due Wed 10/15

- Faster and Faster (or Higher and Higher)
- For a sound:
\square increasingly compress the sound:
- $0 \%-25 \% \quad 1: 1$ (no compression)
- 25\%-50\% $\quad 1: 1.25$
- 50\% - 75\% 1:1.5
- 75\%-100\% 1:2 (twice as fast)
\square print out how much shorter in seconds the compressed sound is
\square save the sound to a file

Assignment 5

- For extra credit on Final Exam
- For a sound:
\square \#comment that you are doing the challenge
\square increasingly compress the sound:
- $0 \%-25 \% \quad 1: 1$ (no compression)
- $25 \%-100 \%$ smoothly change from $1: 1$ to $1: 2$ (twice as fast) instead of in steps
\square print out how much shorter in seconds the compressed sound is
- this method should produce different results from basic
\square save the sound to a file

Questions?

TODAY

- Midterm
- Introduction to working with sound
- HW 5 - Faster and Faster

Coming attractions

■ Today - LAST DAY TO REGISTER TO VOTE

- For Next Monday:
read Chapter 7
\square Quiz 7 due 10:00 am

