
CS 1124
Media Computation

Steve Harrison
Lecture 5.2 (September 25, 2008)

Before we get to today’s
main events ...

Remember our JPEG problem in
Project 4?

3

>>> batterFile = pickAFile()

>>> batterPic = makePicture(batterFile)

>>> writePictureTo(batterPic, "newBatter.jpg")

>>> newBatterPic = makePicture(pickAFile())

Look at the red line of the strike zone.
And neither are (255,0,0) !

Simple solution -- use .png
format

4

Red
(255,0,0)

White (255,
255, 255)

Black (0,0,0)

Today

iTunes effect
who has the mirror effect ?

Really transforming pictures....
swapping backgrounds

chromaKey (or the art of the Weather Channel)

Drawing graphics
Drawing graphics by changing lots of pixels

Graphics functions that are built in to JES

Programmed graphics

5

High level

def iTunesEffect(fileName):
get the picture, its height and create picture 50% taller picture
source = makePicture(fileName)
sourceHeight = getHeight(source)
target = makeEmptyPicture(getWidth(source), int(sourceHeight*1.5))
copy the picture
target = copyPicture(source, target, 1, 1)
now put fading mirror image below picture
target = mirrorFade(source, target, 1, sourceHeight)
show(target)
return target

def mirrorFade(src, trgt, startX, startY):

set source y to last row so that we copy from bottom to top for mirror effect

srcHeight = getHeight(src) * 1.0

srcY = srcHeight

for each y in the target from the startY to the height of the target

for trgtY in range(startY, getHeight(trgt) + 1) :

figure out how much to fade to black for this row

fade = (srcY / srcHeight) - 0.25 <== subtracting a factor
for each x in the target and the source from the startX to the width of the pictures

for x in range(startX, getWidth(src) + 1) :

get the pixel from the source picture

srcPixel = getPixel(src, x, int(srcY))

multiply each color by the fade factor

trgtRed = int(getRed(srcPixel) * fade)

trgtGreen = int(getGreen(srcPixel) * fade)

trgtBlue = int(getBlue(srcPixel) * fade)

put the pixel into the target

setColor(getPixel(trgt, x, trgtY), makeColor(trgtRed, trgtGreen, trgtBlue))

decrement the row in the source file to move towards the top of the source

srcY = srcY - 2.0 <== stepping by twos makes floor seem more oblique to viewer
if srcY < 1.0 :

srcY = 1.0

return trgt

Lower level: mirrorFade(s,t,x,y)
alternatives

Who made a good mirrored
floor?
Fade function?
Step?

8

Today

iTunes effect
Really transforming pictures....

swapping backgrounds

chromaKey (or the art of the Weather Channel)

Drawing graphics
Drawing graphics by changing lots of pixels

Graphics functions that are built in to JES

Programmed graphics

9

New Stuff - chromakey and pixel
replacement

This is really cool....
If pixel color is in certain range replace with pixel

from another picture

10

Swap the background

If this pixel is nearly the same as the pixel in a
background-only picture, then substitute a pixel
from a new background picture

11

def swapBackground(src, background, newBackground):
src, and background must be the same size
newBackground must be at least as big as src and background
for x in range(1, getWidth(src) + 1) :

for y in range(1, getHeight(src) + 1) :
srcPxl = getPixel(src, x, y)
backgroundPxl = getPixel(background, x, y)
if (distance(getColor(srcPxl), getColor(backgroundPxl)) < 15.0):

setColor(srcPxl, getColor(getPixel(newBackground, x, y)))
return src

Swap the background

If this pixel is nearly the same as the pixel in a
background-only picture, then substitute a pixel
from a new background picture

11

def swapBackground(src, background, newBackground):
src, and background must be the same size
newBackground must be at least as big as src and background
for x in range(1, getWidth(src) + 1) :

for y in range(1, getHeight(src) + 1) :
srcPxl = getPixel(src, x, y)
backgroundPxl = getPixel(background, x, y)
if (distance(getColor(srcPxl), getColor(backgroundPxl)) < 15.0):

setColor(srcPxl, getColor(getPixel(newBackground, x, y)))
return src

Is JPEG
compression a

problem?

Chromakey - just like the
Weather Channel

12

def chromaKey(src, background):
src, background, newBackground must be the same size
for x in range(1, getWidth(src) + 1) :

for y in range(1, getHeight(src) + 1) :
srcPxl = getPixel(src, x, y)
backgroundPxl = getPixel(background, x, y)
if (getRed(srcPxl) + getGreen(srcPxl) < getBlue(srcPxl)):

setColor(srcPxl, getColor(getPixel(background, x, y)))
return src

Chromakey

Now that’s really cool!
Unrealistic because:

Mark lit from front, moon lit

from back right

wood frame shows

folds

Mark in focus, equipment not

edge around Mark:

flash makes shadow on screen
jpeg compression emphasizes

changes in luminance
13

Today

iTunes effect
Really transforming pictures....

swapping backgrounds

chromaKey (or the art of the Weather Channel)

Drawing graphics
Drawing graphics by changing lots of pixels

Graphics functions that are built in to JES

Programmed graphics

14

Drawing Graphics

Drawing graphics by changing lots of pixels
Graphics functions that are built in to JES
Programmed graphics

We can make whatever we want on
pictures already

All drawing on pictures comes down to changing
pixel values.

By directly changing values to black (or whatever
else we want), we can draw whatever we want.

Drawing lines on
Santa
def lineExample():
 img = makePicture(pickAFile())
 new = verticalLines(img)
 new2 = horizontalLines(img)
 show(new2)
 return new2

def horizontalLines(src):
 for x in range(1,getHeight(src),5):
 for y in range(1,getWidth(src)):
 setColor(getPixel(src,y,x),black)
 return src

def verticalLines(src):
 for x in range(1,getWidth(src),5):
 for y in range(1,getHeight(src)):
 setColor(getPixel(src,x,y),black)
 return src

Colors defined for you already:
black, white, blue, red, green, gray,
lightGray, darkGray, yellow,
orange, pink, magenta & cyan

Nested loops (one loop inside
another loop):

But that’s tedious

It’s slow and tedious to set every pixel you want.
What you really want to do is to think in terms of

your desired effect (think about “requirements” and
“design”)
E.g. Instead of “change the color of all the pixels that

happen to be in a line to black”, say “draw a black

line”

Drawing Graphics

Drawing graphics by changing lots of pixels
Graphics functions that are built in to JES
Programmed graphics

New functions

 addText(pict,x,y,string) puts the string starting at position
(x,y) in the picture

 addLine(picture,x1,y1,x2,y2) draws a line from position
(x1,y1) to (x2,y2)

 addRect(pict,x1,y1,w,h) draws a black rectangle (unfilled)
with the upper left hand corner of (x1,y1) and a width of w
and height of h. Same as:

addLine(pict, x1, y1, x1+w, y1)

addLine(pict, x1+w, y1, x1+w, y1+h)

addLine(pict, x1+w, y1+h, x1, y1+h)

addLine(pict, x1, y1+h, x1, y1)

 addRectFilled(pict,x1,y1,w,h,color) draws a rectangle
filled with the color of your choice with the upper left hand
corner of (x1,y1) and a width of w and height of h

Example picture
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

A thought experiment

Look at that previous page: Which is a fewer
number of bytes?
The program that drew the picture

The pixels in the picture itself.

A thought experiment

Look at that previous page: Which is a fewer
number of bytes?
The program that drew the picture

The pixels in the picture itself.
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

A thought experiment

Look at that previous page: Which is a fewer
number of bytes?
The program that drew the picture

The pixels in the picture itself.
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

A thought experiment

Look at that previous page: Which is a fewer
number of bytes?
The program that drew the picture

The pixels in the picture itself.
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

It’s a no-brainer
The program is less than 300 characters (100 bytes)

The picture is stored on disk at about 15,000 bytes

Drawing Graphics

Drawing graphics by changing lots of pixels
Graphics functions that are built in to JES
Programmed graphics

Vector-based vs.
Bitmap Graphical representations
Vector-based graphical representations are basically

executable programs that generate the picture on
demand.
Postscript, Illustrator, Flash, and AutoCAD use vector-

based representations

Editors change the vector representation which
changes the picture

Bitmap graphical representations (like JPEG, BMP,
GIF) store individual pixels or representations of
those pixels.
JPEG and GIF are actually compressed picture

representations

Vector-based representations can be
smaller

Vector-based representations can be much smaller
than bit-mapped representations
Smaller means faster transmission (Flash and

Postscript)

If you want all the detail of a complex picture, no, it’s

not.

But vector-based has more value
than that
 Imagine that you’re editing a picture with lines on it.

 If you edit a bitmap image and extend a line, it’s just more bits.
 There’s no way to really realize that you’ve extended or shrunk the line.

 If you edit a vector-based image, it’s possible to just change the
specification
 Change the numbers saying where the line is
 Then it really is the same line

 That’s important when the picture drives the creation of the
product, like in automatic cutting machines

Example programmed graphic

 If I did this right, we
perceive the left half as
lighter than the right half

 In reality, the end quarters
are actually the same colors.

Example programmed graphic

 If I did this right, we
perceive the left half as
lighter than the right half

 In reality, the end quarters
are actually the same colors.

Building a programmed graphic
def greyEffect():
 file = getMediaPath("640x480.jpg")
 pic = makePicture(file)
 # First, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(1,100):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 # Second, 100 columns of increasing greyness
 greyLevel = 100
 for x in range(100,200):
 grey = makeColor(greyLevel, greyLevel, greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1

Third, 100 colums of increasing greyness,
from 0
 greyLevel = 0
 for x in range(200,300):
 grey = makeColor(greyLevel, greyLevel,
greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1
 # Finally, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(300,400):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 return pic

Another Programmed Graphic
def coolpic():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 color = makeColor(index*10,index*5,index)
 addRectFilled(canvas,0,0,index*10,index*10,color)
 show(canvas)
 return canvas

And another

def coolpic2():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 addRect(canvas,index,index,index*3,index*4)
 addRect(canvas,100+index*4,100+index*3,index*8,index*10)
 show(canvas)
 return canvas

Why do we write programs?

Could we do this in Photoshop? Maybe
I’m sure that you can, but you need to know how.

Illustrator is probably better, but still need to learn.

Could I teach you to do this in Photoshop? Maybe
Might take a lot of demonstration

But this program is an exact definition of the
process of generating this picture
It works for anyone who can run the program, without

knowing Photoshop

Today

iTunes effect
Really transforming pictures....

swapping backgrounds

chromaKey (or the art of the Weather Channel)

Drawing graphics
Drawing graphics by changing lots of pixels

Graphics functions that are built in to JES

Programmed graphics

32

Coming Attractions

This Friday (9/26)
Group project due 2:00 PM

e-mail .zip file to srh@vt.edu

Bring to Lab!

Next Monday (9/29)
Assignment 4 due 10:00 AM

Next Wednesday (10/1)
midterm

midterm practice quiz available -- NOT GRADED

33

mailto:srh@vt.edu
mailto:srh@vt.edu

